

Результаты внедрения технологий ИИ в здравоохранение: цифровизация лучевой диагностики

Юрий Александрович ВАСИЛЬЕВ,

директор Центра диагностики и телемедицины ДЗМ, главный внештатный специалист по лучевой и инструментальной диагностике ДЗМ

Москва, 2023

Ресурсное обеспечение службы лучевой диагностики

2 206

врачей-рентгенологов в сети

350

врачей-рентгенологов в МРЦ

2 153

рентгенолаборантов

154

55 🗳

Ангиографы

Маммографы

879 🕆 Рентгеновские диагностические

аппараты

182 🔘

203

Флюорографы и U-дуги

Денситометры

52

MPT

18 🗐

ΟΦЭΚΤ/ΚΤ, гамма-камеры

ВСЕГО: 1 624

Парк Москвы не уступает по оснащенности КТ мировым столицам*

Москва занимает второе место по обеспечению современным оборудованием

5 Лондон

^{*} по данным Организации экономического сотрудничества и развития

Единая цифровая платформа здравоохранения Москвы

Единая цифровая платформа реализуется ДИТ в рамках модернизации комплекса социального развития г. Москвы

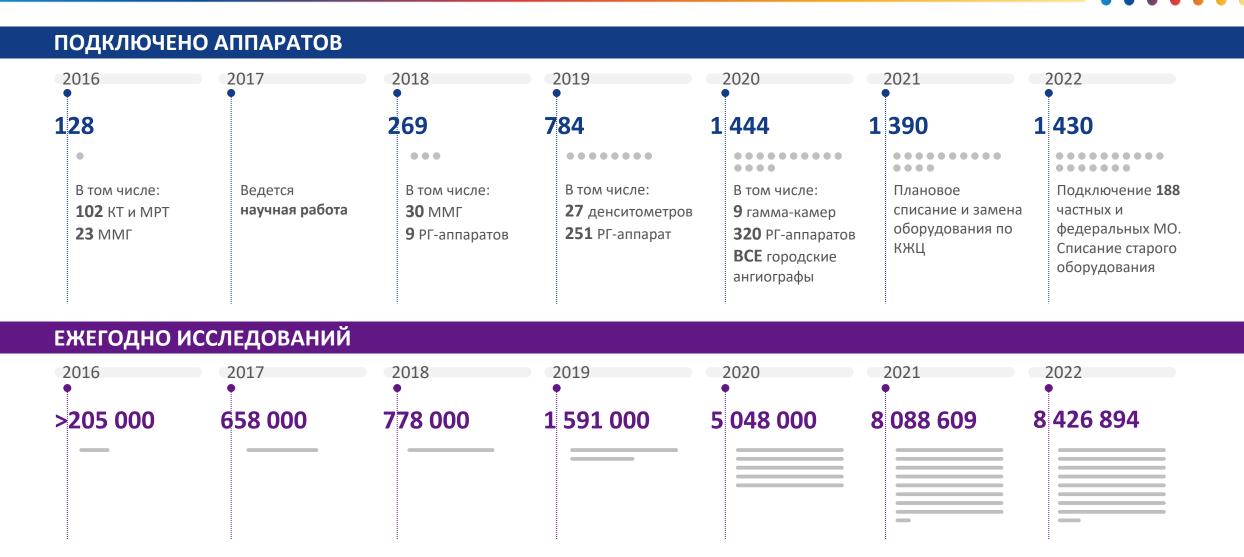
ВРАЧ

- Все документы в электронном виде
- СППВР
- ТМК «врач-врач»
- Цифровые ассистенты

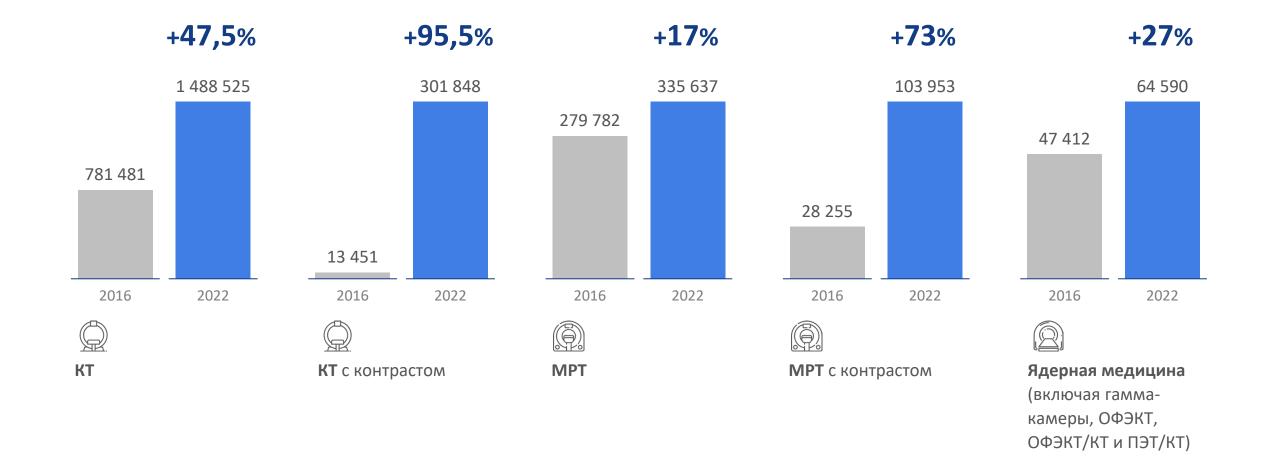
ПАЦИЕНТ

- Все документы в электронном виде на портале mos.ru
- Мобильное приложение «ЕМИАС.Инфо»
- Единый цифровой архив исследований
- Электронные рецепты
- ТМК «врач-пациент»

МЕДИЦИНСКАЯ ОРГАНИЗАЦИЯ


- Защищенный цифровой контур для всех поликлиник и 80% больниц
- Единый архив документации
- Удобный инструмент контроля
- Объективные показатели загрузки

ЕРИС: динамика с 2016 по 2022 гг.



Рост количества исследований

5

Управление на основе данных

ТРЕБУЕТСЯ

1. Собрать данные

2. Обработать собранную информацию

Проанализировать

4. Представить руководству

РИСКИ:

- ошибки
- нестыковки
- пропуски
- искажения

Влияют на качество данных и приводят к формированию некорректных выводов и принятию неправильных решений

призвана решить большую часть этих проблем

РЕЗУЛЬТАТ

- 1. Проще и оперативнее проводится анализ
- 2. Быстрее тестируются рабочие гипотезы
- 3. Качественно отображаются результаты работы
- 4. Существенно увеличивается скорость принятия управленческих решений

Повышается эффективность управления здравоохранением

Стадии развития системы управления на основе данных

Система статистических отчетов

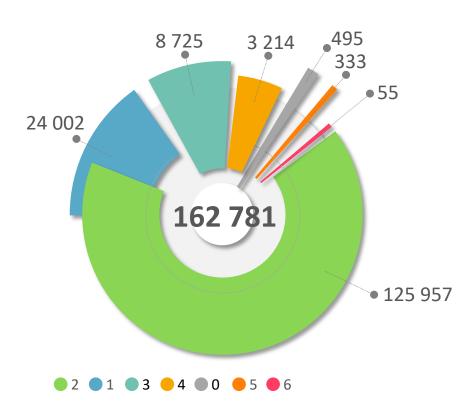
> 130 форм, > 60 тыс. показателей (формализованные таблицы, например статистические формы №30 «Сведения о медицинской организации», №7 «Сведения о злокачественных новообразованиях» и др.) Информационно-аналитические

системы

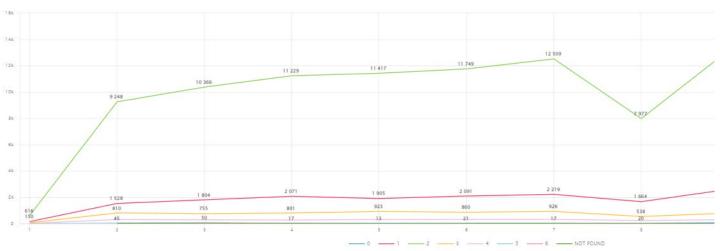
построенные на базе платформ класса Business Intelligence (BI) – Dashboards.

Системы поддержки принятия решений

Предиктивные системы

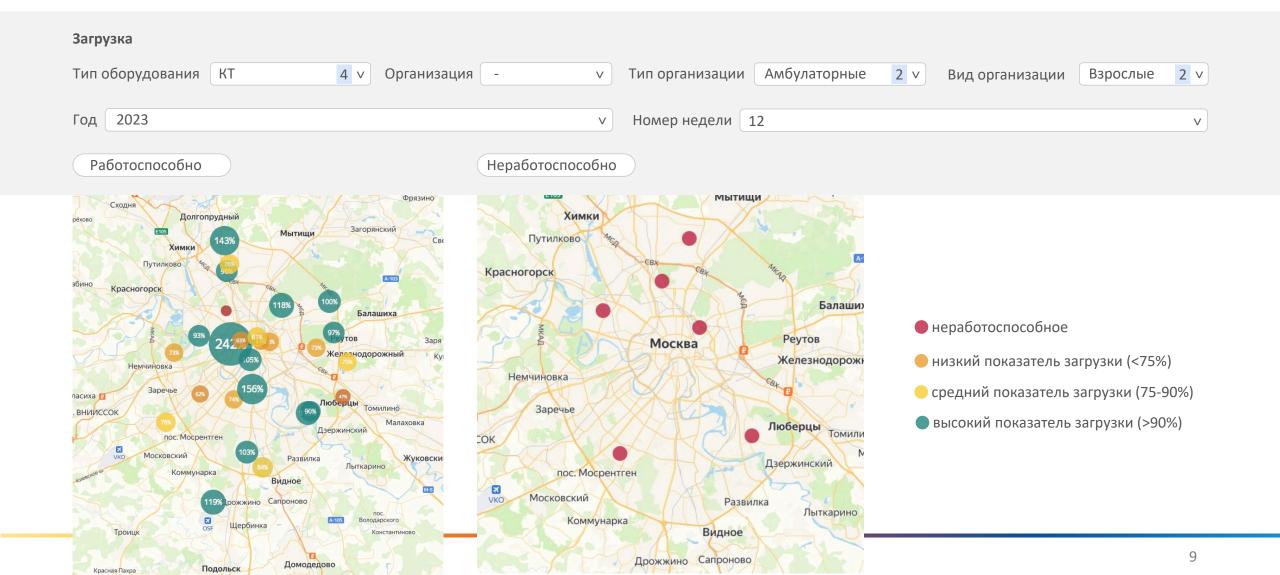


Дашборд по отчету «ММГ Онкология»



Отчеты ММГ с использованием классификации BI-RADS

Распределение по BI-RADS



На основе дашборда можно судить о **ДОЛЕ** выставления степени **BI-RADS III**, когда требуется повторное исследование, о случаях **НЕСОБЛЮДЕНИЯ** врачамирентгенологами классификации BI-RADS, а также о **ДОЛЕ** выставления диагнозов злокачественного новообразования молочной железы (**BI-RADS V-VI**)

Управление на основе данных. Загрузка. Интерактивная карта Москвы

Московский референс-центр лучевой диагностики

- Применение телемедицинских технологий и искусственного интеллекта
- Описания по субспециализациям и контроль качества
- Работа с первичным звеном здравоохранения
- Масштабирование в >10 субъектах РФ

350 врачей-рентгенологов

~100 000 дистанционных описаний в неделю

5 000 000 дистанционных описаний с 2020 г.

~40 000 дистанционных аудитов в год

Бесперебойное проведение лучевых исследований (24/7/365)
Ликвидация кадрового дефицита врачей
Повышение производительности труда в 2 раза
Сокращение времени подготовки заключения с 27 до 0,5 ч

Московский эксперимент по использованию технологий компьютерного зрения в лучевой диагностике

9млн исследований

~230 датасетов

>150 больниц

~1 500 рентгенологов 20 направлений

Присоединяйтесь к Московскому эксперименту!

Реальные возможности технологий искусственного интеллекта

Поддержка решений, СНИЖЕНИЕ СУБЪЕКТИВИЗМА

СОКРАЩЕНИЕ ЗАТРАТ, повышение производительности скринингов

ПОВЫШЕНИЕ ПРОИЗВОДИТЕЛЬНОСТИ ТРУДА врача:

формирование описания исследования за счет автоматизации множественных измерений

УСКОРЕНИЕ ОКАЗАНИЯ МЕДИЦИНСКОЙ ПОМОЩИ:

триаж/сортировка «норма-патология» (по вероятности патологии)

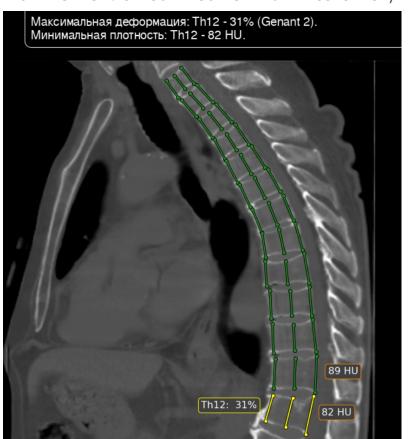
СРАВНЕНИЕ В ДИНАМИКЕ: повышение точности диагностики за счет объективизации

Жизненный цикл ИИ-сервиса в медицинской диагностике

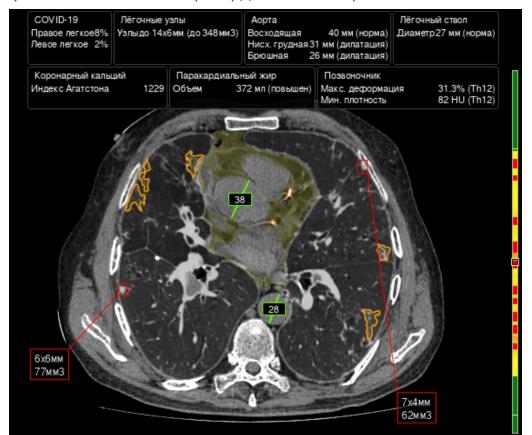
^{*} Зона ответственности разработчика ИИ-сервиса

^{**} Зона ответственности Центра диагностики и телемедицины ДЗМ

Пример работы комплексного ИИ-сервиса



2023 г.



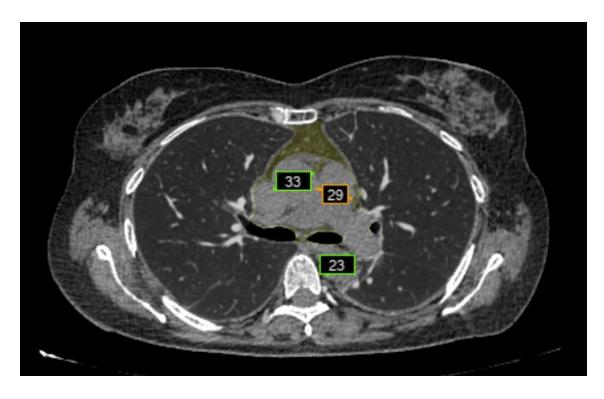
КОМПЛЕКСНЫЙ СЕРВИС НАХОДИТ 9 ПАТОЛОГИЙ

Выявлены патологические изменения (деформация и снижение плотности костной ткани позвонков)

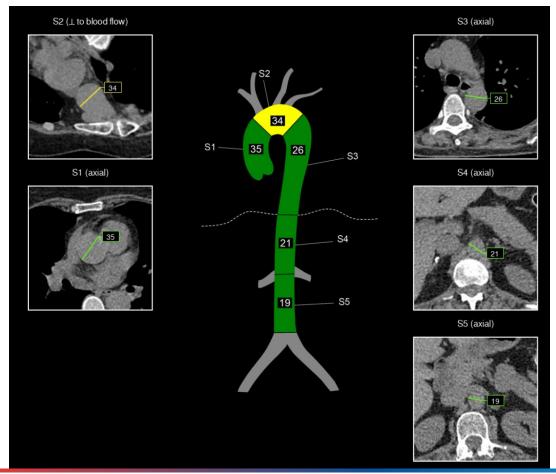
Выявлены: COVID-19, легочный узел, коронарный кальций, увеличение объема паракардиального жира

9 патологий +30 % 2022 г. 7

14



Пример работы комплексного ИИ-сервиса



Восходящий и нисходящий отделы грудной аорты без патологического расширения, легочный ствол расширен

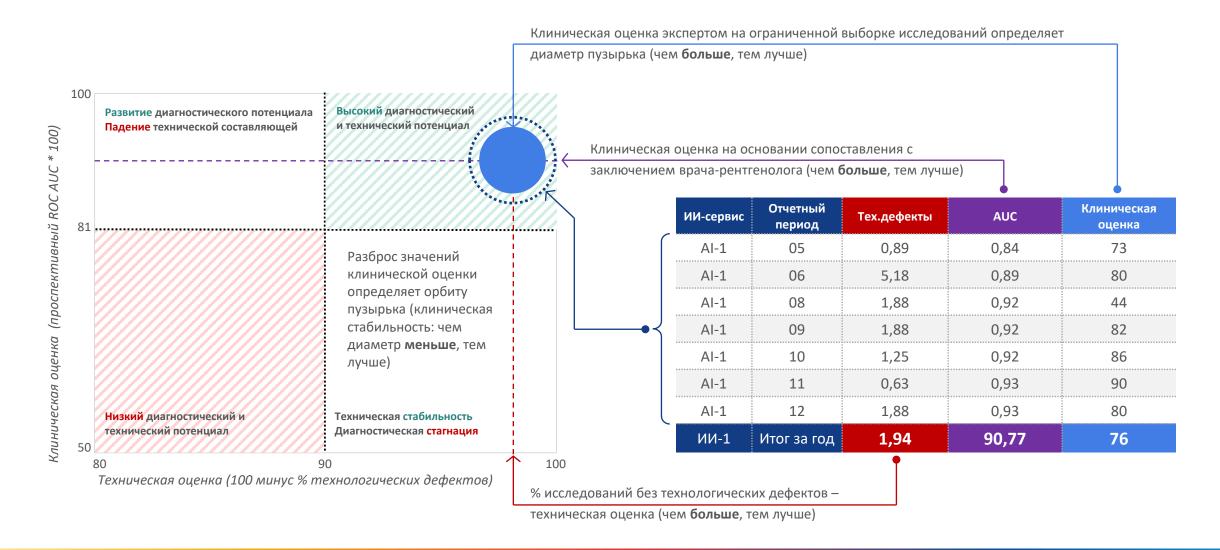
Восходящий и нисходящий отделы грудной аорты без патологического расширения

Методики контроля качества

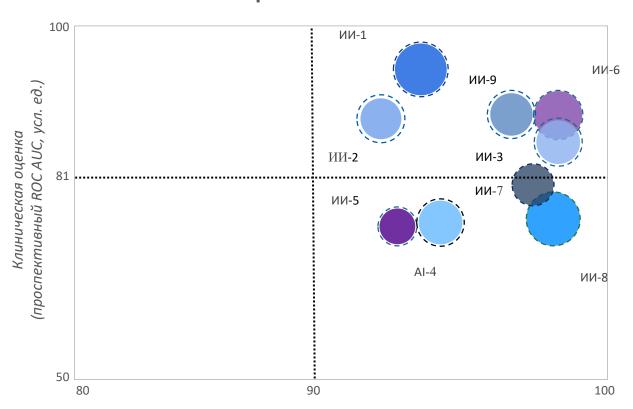
Технологический мониторинг

- соответствие базовым функциональным требованиям
- корректность обмена данными между информационными системами
- наличие и корректность дополнительной серии (изображение с маркировкой) и DICOM SR (проект описания)
- принципиальные дефекты (анализ некорректной анатомической области или проекции, маркировка за пределами целевого органа, изменение оригинальной серии)
- наличие необходимой сопроводительной информации

Клинический мониторинг


- соответствие базовым диагностическим требованиям
- выявление целевой патологии (бинарное решение)
- корректность маркировки (оконтуривание)
- корректность локализации
- корректность выявления всех патологий на данном изображении

Матрица зрелости ИИ-сервисов



Матрица по направлению КТ ОГК прочее

КТ ОГК аорта и легочный ствол

Техническая оценка (единица минус % технологических дефектов)

Клинические задачи*

- Определение расширения восходящего и нисходящего отделов грудной аорты. Количественное определение диаметра аорты (ИИ-2, ИИ-5, ИИ-6, ИИ-8)
- Определение расширения легочного ствола. Количественное определение диаметра легочного ствола (ИИ-1, ИИ-3, ИИ-4, ИИ-7)

Матрица отражает показатели за 2022 г.

^{*} На основании базовых диагностических требований

Результаты внедрения ИИ в лучевую диагностику

Благодаря программе грантов Правительства Москвы и научно-методическому сопровождению порядка **50 ии-сервисов** успешно **ИНТЕГРИРОВАНЫ В ГИС** в сфере здравоохранения субъекта РФ

Технологии ИИ ПРИМЕНИМЫ в лучевой диагностике

ОТНОШЕНИЕ врачей постепенно меняется в ЛУЧШУЮ СТОРОНУ

РЕАЛИЗОВАНА СИСТЕМА ТЕХНИЧЕСКИХ И КЛИНИЧЕСКИХ ИСПЫТАНИЙ

22 ии-сервиса зарегистрированы как медицинские изделия

Интенсивно формируется **РЫНОК**

10 национальных стандартов вступили в силу

ПЕРВАЯ медицинская услуга с применением **ИИ в ОМС**

БЛАГОДАРЮ ЗА ВНИМАНИЕ!

